Semantic segmentation aims to classify every pixel of an input image. Considering the difficulty of acquiring dense labels, researchers have recently been resorting to weak labels to alleviate the annotation burden of segmentation. However, existing works mainly concentrate on expanding the seed of pseudo labels within the image's salient region. In this work, we propose a non-salient region object mining approach for weakly supervised semantic segmentation. We introduce a graph-based global reasoning unit to strengthen the classification network's ability to capture global relations among disjoint and distant regions. This helps the network activate the object features outside the salient area. To further mine the non-salient region objects, we propose to exert the segmentation network's self-correction ability. Specifically, a potential object mining module is proposed to reduce the false-negative rate in pseudo labels. Moreover, we propose a non-salient region masking module for complex images to generate masked pseudo labels. Our non-salient region masking module helps further discover the objects in the non-salient region. Extensive experiments on the PASCAL VOC dataset demonstrate state-of-the-art results compared to current methods.
翻译:语义分割法旨在对输入图像的每一个像素进行分类。考虑到获取密度高的标签的困难,研究人员最近使用薄弱的标签来减轻分解的批注负担。然而,现有的工程主要集中于在图像突出区域中扩大假标签的种子。在这项工作中,我们提出一个非高度区域目标开采方法,用于低监管的语义分割法。我们引入了一个基于图形的全球推理单位,以加强分类网络捕捉断绝和遥远区域之间全球关系的能力。这有助于网络在突出区域之外激活物体特征。为了进一步挖掘非高度区域物体,我们提议利用分解网络的自我校正能力。具体地说,我们提议一个潜在的物体开采模块来降低伪标签中的虚假负值率。此外,我们提议一个基于图解的不高度区域掩蔽模块,用于复杂图像生成遮蔽的假标签。我们的非高度区域掩蔽模块有助于进一步发现非高度区域中的物体。为了进一步挖掘非高度区域中的物体。我们提议,我们提议对非高度区域进行分解区域天区域物体进行分解。关于PASAL VOC的比较数据方法的大规模实验。