Testing the order of accuracy of (very) high order methods for shallow water (and Euler) equations is a delicate operation and the test cases are the crucial starting point of this operation. We provide a short derivation of vortex-like analytical solutions in 2 dimensions for the shallow water equations (and, hence, Euler equations) that can be used to test the order of accuracy of numerical methods. These solutions have different smoothness in their derivatives (up to $\mathcal C^\infty$) and can be used accordingly to the order of accuracy of the scheme to test.


翻译:测试浅水(和Euler)方程式的(非常)高排序方法的精度顺序是一个微妙的操作,测试案例是这一操作的关键起点。我们为浅水方程式(以及,因此,Euler方程式)提供了两个层面的涡旋式分析解决方案的简短衍生物,可用于测试数字方法的精度顺序。这些解决方案的衍生物具有不同的顺畅性(最高可达$\mathcal C ⁇ infty$),因此可以用于测试计划的精度顺序。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
65+阅读 · 2021年8月7日
专知会员服务
51+阅读 · 2021年5月19日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
78+阅读 · 2021年1月29日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
9+阅读 · 2018年5月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员