Given a finite set of local constraints, we seek a cellular automaton (i.e., a local and uniform algorithm) that self-stabilises on the configurations that satisfy these constraints. More precisely, starting from a finite perturbation of a valid configuration, the cellular automaton must eventually fall back to the space of valid configurations where it remains still. We allow the cellular automaton to use extra symbols, but in that case, the extra symbols can also appear in the initial finite perturbation. For several classes of local constraints (e.g., $k$-colourings with $k\neq 3$, and North-East deterministic constraints), we provide efficient self-stabilising cellular automata with or without additional symbols that wash out finite perturbations in linear or quadratic time, but also show that there are examples of local constraints for which the self-stabilisation problem is inherently hard. We note that the optimal self-stabilisation speed is the same for all local constraints that are isomorphic to one another. We also consider probabilistic cellular automata rules and show that in some cases, the use of randomness simplifies the problem. In the deterministic case, we show that if finite perturbations are corrected in linear time, then the cellular automaton self-stabilises even starting from a random perturbation of a valid configuration, that is, when errors in the initial configuration occur independently with a sufficiently low density.
翻译:在一系列有限的本地限制下, 我们寻求一个细胞自动图解( 即本地和统一的算法), 使满足这些限制的配置实现自我稳定。 更确切地说, 从一个有效配置的有限扰动开始, 细胞自动图解最终必须返回到有效配置的空间, 我们允许细胞自动图解使用额外的符号, 但在此情况下, 额外的符号也可以出现在初始的有限扰动中 。 对于若干种本地限制( 比如, 美元3美元和美元3美元, 以及东北的确定性限制) 来说, 我们提供高效的自我稳定细胞自动图解剖, 不管是从一个有限的扰动开始, 在线性或四面形时间里, 我们允许细胞自动图解剖使用有限的扰动空间。 我们注意到, 最佳的自我稳定速度与所有局部障碍一样。 我们还认为, 在初始的初始配置中, 随机的自我稳定度规则会显示, 自动解析定的自我问题会显示, 当我们开始出现一个不固定的缩式的自我修正。