Modelling the density $p(x)$ by probabilistic generative models is an intuitive way to detect out-of-distribution (OOD) data, but it fails in the deep learning context. In this paper, we list some falsehoods that machine learning researchers believe about density-based OOD detection. Many recent works have proposed likelihood-ratio-based methods to `fix' this issue. We propose a framework, the OOD proxy framework, to unify these methods, and we argue that likelihood ratio is a principled method for OOD detection and not a mere `fix'. Finally, we discuss the relationship between domain detection and semantics.
翻译:通过概率基因模型模拟密度$p(x)美元(美元)是探测分配外数据的一种直觉方法,但在深层学习中却失败了。本文列举了机器学习研究人员相信基于密度的OOD检测的一些假象。许多最近的工作都提出了“解决这个问题”的可能性比基方法。我们提出了一个统一这些方法的框架,即OOOD代用框架,我们争辩说,可能性比是探测OOOD的一种有原则的方法,而不仅仅是“固定”的方法。最后,我们讨论了域探测和语义学之间的关系。