Regression on observational data can fail to capture a causal relationship in the presence of unobserved confounding. Confounding strength measures this mismatch, but estimating it requires itself additional assumptions. A common assumption is the independence of causal mechanisms, which relies on concentration phenomena in high dimensions. While high dimensions enable the estimation of confounding strength, they also necessitate adapted estimators. In this paper, we derive the asymptotic behavior of the confounding strength estimator by Janzing and Sch\"olkopf (2018) and show that it is generally not consistent. We then use tools from random matrix theory to derive an adapted, consistent estimator.
翻译:观测数据的回归可能无法在未观察到的混乱中捕捉到因果关系。 混为一谈的强度量度测这种不匹配, 但估计它本身需要额外的假设。 一个共同的假设是因果机制的独立性, 它依赖于高度的浓度现象。 虽然高度能估计混为一谈的强度, 但它们也需要经调整的估测器。 在本文中, 我们通过Janzing 和 Sch\'olkopf (2018年) 得出了混为一谈的体积估测器的无药用行为, 并表明它一般不连贯。 然后我们用随机矩阵理论的工具来得出一个经过调整的、 一致的估测器。