We propose Seg&Struct, a supervised learning framework leveraging the interplay between part segmentation and structure inference and demonstrating their synergy in an integrated framework. Both part segmentation and structure inference have been extensively studied in the recent deep learning literature, while the supervisions used for each task have not been fully exploited to assist the other task. Namely, structure inference has been typically conducted with an autoencoder that does not leverage the point-to-part associations. Also, segmentation has been mostly performed without structural priors that tell the plausibility of the output segments. We present how these two tasks can be best combined while fully utilizing supervision to improve performance. Our framework first decomposes a raw input shape into part segments using an off-the-shelf algorithm, whose outputs are then mapped to nodes in a part hierarchy, establishing point-to-part associations. Following this, ours predicts the structural information, e.g., part bounding boxes and part relationships. Lastly, the segmentation is rectified by examining the confusion of part boundaries using the structure-based part features. Our experimental results based on the StructureNet and PartNet demonstrate that the interplay between the two tasks results in remarkable improvements in both tasks: 27.91% in structure inference and 0.5% in segmentation.
翻译:我们提议Seg & Struct, 是一个监督的学习框架, 利用部分分割和结构推断之间的相互作用, 并在一个综合框架中展示其协同作用。 最近的深层学习文献对部分分割和结构推断都进行了广泛的研究, 而每项任务所使用的监督没有被充分利用来协助其他任务。 也就是说, 结构推断通常使用一个不利用点对点联系的自动编码器进行。 此外, 部分分割大多在没有结构前缀的情况下进行, 从而显示产出部分的可信任性。 我们展示了这两个任务如何在充分利用监督来改进绩效的同时能够最佳地结合起来。 我们的框架首先将原始输入形状用现成的算法对部分进行拆分解, 然后将其输出绘制成一个部分的节点, 建立点对部分的组合。 在此之后, 我们预测了结构信息, 例如, 部分连接框和部分关系。 最后, 分割通过利用基于结构部分的特性来检查部分界限的混淆, 来纠正。 我们的框架首先将原始输入一个部分, 使用现成结构网络和部分中的部分的实验性结果, 显示在结构图象中的% 和部分中, 在两个分析中的结果中, 显示两个任务中的实验结果中, 显示两个任务中的实验结果中, 和部分的改进。