Mixed-integer nonlinear optimization is a broad class of problems that feature combinatorial structures and nonlinearities. Typical exact methods combine a branch-and-bound scheme with relaxation and separation subroutines. We investigate the properties and advantages of error-adaptive first-order methods based on the Frank-Wolfe algorithm for this setting, requiring only a gradient oracle for the objective function and linear optimization over the feasible set. In particular, we will study the algorithmic consequences of optimizing with a branch-and-bound approach where the subproblem over the convex hull of the mixed-integer feasible set due to Frank-Wolfe linear oracles, compared to solving the subproblems over the continuous relaxation of the same set. This novel approach computes feasible solutions while working on a single representation of the polyhedral constraints, leveraging the full extent of Mixed-Integer Programming (MIP) solvers without an outer approximation scheme.
翻译:混合整形非线性优化是一个广泛的问题类别,以组合结构和非线性为特点。 典型的精确方法将分流和约束计划与放松和分离子例程相结合。 我们根据Frank-Wolfe 算法对这一设置的误差适应第一阶方法的特性和优点进行调查, 只需要对目标函数有一个梯度符和对可行的集进行线性优化。 特别是, 我们将研究以分支和约束方法优化的算法后果, 即由于Frank- Wolfe 线性或骨骼组合而可操作的混合整形内存体的子问题, 与解决同一集持续放松的子问题相比。 这种新颖的方法计算出可行的解决办法, 同时研究多元制约的单一代表法, 利用全方位的混合内插图( MIP) 解答器, 而没有外近近方案。