Generics express generalizations about the world (e.g., birds can fly) that are not universally true (e.g., newborn birds and penguins cannot fly). Commonsense knowledge bases, used extensively in NLP, encode some generic knowledge but rarely enumerate such exceptions and knowing when a generic statement holds or does not hold true is crucial for developing a comprehensive understanding of generics. We present a novel framework informed by linguistic theory to generate exemplars -- specific cases when a generic holds true or false. We generate ~19k exemplars for ~650 generics and show that our framework outperforms a strong GPT-3 baseline by 12.8 precision points. Our analysis highlights the importance of linguistic theory-based controllability for generating exemplars, the insufficiency of knowledge bases as a source of exemplars, and the challenges exemplars pose for the task of natural language inference.
翻译:通用语表达对世界的一般概括(例如,鸟可以飞)并非普遍适用(例如,新生鸟和企鹅不能飞)。常识知识库在NLP中被广泛应用,用于编码一些通用知识,但很少列举这些例外,了解通用语何时成立和不成立对于发展对通用语的全面理解至关重要。我们提出了一个新颖的框架,基于语言学理论生成实例-通用语成立或不成立的具体案例。针对约650个通用语,我们生成了约19k个实例,并展示了我们的框架比强大的GPT-3基线高出12.8个精度点。我们的分析凸显了基于语言学理论的可控性对生成实例的重要性,知识库作为实例来源的不足以及实例对自然语言推理任务的挑战。