A useful approach to solve inverse problems is to pair the parameter-to-data map with a stochastic dynamical system for the parameter, and then employ techniques from filtering to estimate the parameter given the data. Three classical approaches to filtering of nonlinear systems are the extended, ensemble and unscented Kalman filters. The extended Kalman inversion (ExKI) is impractical when the forward map is not readily differentiable and given as a black box, and also for high dimensional parameter spaces because of the need to propagate large covariance matrices. Ensemble Kalman inversion (EKI) has emerged as a useful tool which overcomes both of these issues: it is derivative free and works with a low-rank covariance approximation formed from the ensemble. In this paper, we demonstrate that unscented Kalman methods also provide an effective tool for derivative-free inversion in the setting of black-box forward models, introducing unscented Kalman inversion (UKI). Theoretical analysis is provided for linear inverse problems, and a smoothing property of the data mis-fit under the unscented transform is explained. We provide numerical experiments, including various applications: learning subsurface flow permeability parameters; learning the structure damage field; learning the Navier-Stokes initial condition; and learning subgrid-scale parameters in a general circulation model. The theory and experiments show that the UKI outperforms the EKI on parameter learning problems with moderate numbers of parameters and outperforms the ExKI on problems where the forward model is not readily differentiable, or where the derivative is very sensitive. In particular, UKI based methods are of particular value for parameter estimation problems in which the number of parameters is moderate but the forward model is expensive and provided as a black box which is impractical to differentiate.


翻译:解决反向问题的有用方法是将参数到数据图配成一个参数的随机动态系统,然后将参数的参数的参数比对成一个中度参数的参数动态系统,然后从过滤中采用技术来估计给定的数据参数。非线性系统过滤的三种古典方法是扩展的、混合的和不鼓励的 Kalman 过滤器。 扩展的 Kalman 倒版( Exki) 是不切实际的。 如果远方地图不易区分, 并且作为黑盒的黑盒, 并且由于需要传播大量 Coevari 矩阵, 并且对于中度的中度参数空间参数空间空间空间来说也是不切实际的。 变版的 Emememble Kalman (EKI) 已经形成一个有用的工具, 它是一个有用的工具, 克服了这两个问题: 它是衍生出来的, 它是自由的, 并且用低位的 Coltive orrial URLI 和 初始化 应用程序的平滑性 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月25日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员