We study the problem of diffeomorphometric geodesic landmark matching where the objective is to find a diffeomorphism that via its group action maps between two sets of landmarks. It is well-known that the motion of the landmarks, and thereby the diffeomorphism, can be encoded by an initial momentum leading to a formulation where the landmark matching problem can be solved as an optimisation problem over such momenta. The novelty of our work lies in the application of a derivative-free Bayesian inverse method for learning the optimal momentum encoding the diffeomorphic mapping between the template and the target. The method we apply is the ensemble Kalman filter, an extension of the Kalman filter to nonlinear observation operators. We describe an efficient implementation of the algorithm and show several numerical results for various target shapes.
翻译:我们研究的地貌地貌特征匹配问题,目标是通过两组地标之间的群集行动地图找到一种地貌形态,众所周知,地貌形态运动,以及由此而来的地貌形态运动,可以通过最初的动力进行编码,从而形成一种配方,使里程碑式的匹配问题能够作为这种瞬间的一个优化问题得到解决。我们工作的新颖之处在于采用一种无衍生物的巴耶斯反向方法,学习将模板和目标之间的地貌形态绘图编码的最佳动力。我们采用的方法是共通型卡尔曼过滤器,这是卡尔曼过滤器延伸至非线性观察操作者的一种方法。我们描述了算法的高效实施,并展示了各种目标形状的若干数字结果。