Molecular dynamics (MD) has served as a powerful tool for designing materials with reduced reliance on laboratory testing. However, the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach. Herein, we propose a learning framework to extract a peridynamic model as a mesoscale continuum surrogate from MD simulated material fracture datasets. Firstly, we develop a novel coarse-graining method, to automatically handle the material fracture and its corresponding discontinuities in MD displacement dataset. Inspired by the Weighted Essentially Non-Oscillatory scheme, the key idea lies at an adaptive procedure to automatically choose the locally smoothest stencil, then reconstruct the coarse-grained material displacement field as piecewise smooth solutions containing discontinuities. Then, based on the coarse-grained MD data, a two-phase optimization-based learning approach is proposed to infer the optimal peridynamics model with damage criterion. In the first phase, we identify the optimal nonlocal kernel function from datasets without material damage, to capture the material stiffness properties. Then, in the second phase, the material damage criterion is learnt as a smoothed step function from the data with fractures. As a result, a peridynamics surrogate is obtained. Our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training, and hence allows for substantial reductions in computational cost compared with MD. We illustrate the efficacy of the proposed approach with several numerical tests for single layer graphene. Our tests show that the proposed data-driven model is robust and generalizable: it is capable in modeling the initialization and growth of fractures under discretization and loading settings that are different from the ones used during training.
翻译:分子动态( MD) 是设计材料的强大工具, 减少了对实验室测试的依赖。 但是, 直接使用 MD 来治疗中尺度材料的变形和故障在很大程度上还远不能达到。 在这里, 我们提出一个学习框架, 以提取远地点动力模型, 作为MD模拟材料断裂数据集的中尺度连续代谢器。 首先, 我们开发了一个新的粗缩缩缩缩缩缩方法, 以自动处理材料断裂及其在MD 流离数据集中的相应不一致性。 在“ 基本不运行” 的驱动下, 关键理念在于一个适应程序, 以自动选择本地最平滑的材料变形和故障。 然后, 我们提出一个学习框架, 利用微缩的MDMD数据, 一个两阶段的优化学习方法, 用损坏标准来推导出最佳的 。 在第一阶段, 我们从没有物质损坏的数值的数值降值中, 确定最佳的非本地电离子函数, 关键理念在于适应本地的变压, 相对地变压数据变压, 之后, 一个阶段, 将使用一个数据变压的计算结果 。 。 正在逐步地, 一个阶段, 测试, 以 以 一种 以 一种 向 一种 一种 渐变压 的 的 运行变压的 运行的 。