This study proposes an end-to-end unsupervised diffeomorphic deformable registration framework based on moving mesh parameterization. Using this parameterization, a deformation field can be modeled with its transformation Jacobian determinant and curl of end velocity field. The new model of the deformation field has three important advantages; firstly, it relaxes the need for an explicit regularization term and the corresponding weight in the cost function. The smoothness is implicitly embedded in the solution which results in a physically plausible deformation field. Secondly, it guarantees diffeomorphism through explicit constraints applied to the transformation Jacobian determinant to keep it positive. Finally, it is suitable for cardiac data processing, since the nature of this parameterization is to define the deformation field in terms of the radial and rotational components. The effectiveness of the algorithm is investigated by evaluating the proposed method on three different data sets including 2D and 3D cardiac MRI scans. The results demonstrate that the proposed framework outperforms existing learning-based and non-learning-based methods while generating diffeomorphic transformations.
翻译:本研究提出一个基于移动网格参数化的端到端不受监督的二叶偏畸变形登记框架。 使用此参数化, 一个变形字段可以用其变形的雅各布决定因素和末节速度字段的曲线来模拟。 新的变形字段模型有三个重要优势; 首先, 它放松了对明确的正规化术语和成本函数相应重量的需求。 光滑隐含在解决方案中, 导致一个物理上可信的变形场。 其次, 它通过对叶科比亚决定因素的变形应用明确限制来保证二叶弗朗形态化, 以保持其正值。 最后, 它适合于心脏数据处理, 因为这种变形的参数化性质是界定辐射和旋转元件的变形场。 算法的有效性是通过对三个不同的数据集( 包括 2D 和 3D 心脏MRI 扫描) 的拟议方法进行评估来调查的。 结果表明, 拟议的框架在产生二叶基变形变形变形时, 超越了现有的学习和非学习方法。