A key challenge in causal inference from observational studies is the identification and estimation of causal effects in the presence of unmeasured confounding. In this paper, we introduce a novel approach for causal inference that leverages information in multiple outcomes to deal with unmeasured confounding. The key assumption in our approach is conditional independence among multiple outcomes. In contrast to existing proposals in the literature, the roles of multiple outcomes in our key identification assumption are symmetric, hence the name parallel outcomes. We show nonparametric identifiability with at least three parallel outcomes and provide parametric estimation tools under a set of linear structural equation models. Our proposal is evaluated through a set of synthetic and real data analyses.
翻译:从观察研究得出的因果推论方面的一个关键挑战是,在存在未测的混乱的情况下,查明和估计因果影响。在本文中,我们采用了一种新的因果推论方法,在多重结果中利用信息处理未测的混乱。我们的方法中的关键假设是多种结果之间的有条件独立性。与文献中的现有建议相反,多重结果在我们关键识别假设中的作用是对称的,因此是平行的结果。我们展示了至少三个平行结果的非对称可识别性,并在一套线性结构等式模型下提供了参数估计工具。我们的建议是通过一套合成和真实的数据分析来评估的。