In this paper, we derive variational formulas for the asymptotic exponents of the concentration and isoperimetric functions in the product Polish probability space. These formulas are expressed in terms of relative entropies (which are from information theory) and optimal transport cost functionals (which are from optimal transport theory). Our results verify an intimate connection among information theory, optimal transport, and concentration of measure or isoperimetric inequalities. In the concentration regime, the corresponding variational formula is in fact a dimension-free bound on the exponent of the concentration function. The proofs in this paper are based on information-theoretic and optimal transport techniques. Our results generalize Alon, Boppana, and Spencer's in \cite{alon1998asymptotic}, Gozlan and L\'eonard's \cite{gozlan2007large}, and Ahlswede and Zhang's in \cite{ahlswede1999asymptotical}.
翻译:在本文中,我们为产品波兰概率空间中的浓度和等离子度函数的无症状指数得出变式公式。这些公式的表达方式是相对的寄生虫(来自信息理论)和最佳运输成本功能(来自最佳运输理论 ) 。我们的结果证实了信息理论、最佳运输以及测量或等离子度不平等的集中之间的密切联系。在集中制度中,相应的变式公式事实上是浓度函数表的无尺寸约束。本文中的证据以信息理论和最佳运输技术为基础。我们的结果概括了阿隆、博帕纳和斯潘塞在\cite{alon1998-ymptography}、戈兹兰和L'eonard在\cite{gozlan2007最大}和Ahlswede和Zhangs在\cite{ahriede-1999ymptotic}中的结果。