In this paper, we propose and study a fast multilevel dimension iteration (MDI) algorithm for computing arbitrary $d$-dimensional integrals based on tensor product approximations. It reduces the computational complexity (in terms of the CPU time) of a tensor product method from the exponential order $O(N^d)$ to the polynomial order {\color{black} $O(d^3N^2)$ or better}, where $N$ stands for the number of quadrature points in each coordinate direction. As a result, the proposed MDI algorithm effectively circumvents the curse of the dimensionality of tensor product methods for high dimensional numerical integration. The main idea of the proposed MDI algorithm is to compute the function evaluations at all integration points in the cluster and iteratively along each coordinate direction, so lots of computations for function evaluations can be reused in each iteration. This idea is also applicable to any quadrature rule whose integration points have a lattice-like structure.
翻译:在本文中,我们建议并研究一种基于高压产品近似值计算任意以美元计维元元元集成的快速多维迭代算法(MDI),它降低了一个高压产品方法的计算复杂性(按CPU时间计算),从指数顺序$O(N ⁇ d)美元降低到多元顺序$(color{black}$O(d ⁇ 3N ⁇ 2)或更好},即美元代表每个协调方向的二次点数。因此,拟议的MDI算法有效地绕过了高维度数字集成的高压产品方法的维度的诅咒。拟议的MDI算法的主要思想是计算集体中所有集集集集集集集点的函数评价,并沿着每个协调方向迭接,这样,每个轴中可以重新使用功能评价的计算方法。这个想法也适用于任何集点具有等式结构的二次曲线规则。