We prove that given the ability to make entangled measurements on at most $k$ replicas of an $n$-qubit state $\rho$ simultaneously, there is a property of $\rho$ which requires at least order $2^n$ measurements to learn. However, the same property only requires one measurement to learn if we can make an entangled measurement over a number of replicas polynomial in $k, n$. Because the above holds for each positive integer $k$, we obtain a hierarchy of tasks necessitating progressively more replicas to be performed efficiently. We introduce a powerful proof technique to establish our results, and also use this to provide new bounds for testing the mixedness of a quantum state.
翻译:我们证明,鉴于能够同时对最多以美元计的一元一元一元的复制品进行纠缠的测量,因此存在一个需要至少订购2元一元的测量才能学习的美元财产。然而,同一财产只需要一种测量就可以了解,如果我们能对若干折叠的复制品进行缠绕的测量,以美元计,n美元计。由于以上对每正整数一美元持住,我们得到的任务等级结构要求逐步增加有效复制品的复制品。我们引入了一种强大的验证技术来确定我们的结果,并使用这种方法为测试量子状态的混合性提供新的界限。