Hierarchical taxonomies are common in many contexts, and they are a very natural structure humans use to organise information. In machine learning, the family of methods that use the 'extra' information is called hierarchical classification. However, applied to audio classification, this remains relatively unexplored. Here we focus on how to integrate the hierarchical information of a problem to learn embeddings representative of the hierarchical relationships. Previously, triplet loss has been proposed to address this problem, however it presents some issues like requiring the careful construction of the triplets, and being limited in the extent of hierarchical information it uses at each iteration. In this work we propose a rank based loss function that uses hierarchical information and translates this into a rank ordering of target distances between the examples. We show that rank based loss is suitable to learn hierarchical representations of the data. By testing on unseen fine level classes we show that this method is also capable of learning hierarchically correct representations of the new classes. Rank based loss has two promising aspects, it is generalisable to hierarchies with any number of levels, and is capable of dealing with data with incomplete hierarchical labels.
翻译:在很多情况下, 等级分类是常见的, 它们是一种非常自然的人类用来组织信息。 在机器学习中, 使用“ Extra” 信息的方法组称为等级分类。 但是, 在音频分类中, 这仍然相对没有被探索。 我们这里的重点是如何整合一个问题的等级信息, 学习代表等级关系的嵌入。 之前, 曾提出三重损失来解决这个问题, 但是它提出了一些问题, 比如需要仔细构建三重损失, 并且它在每一次迭代中使用的等级信息范围有限 。 在这项工作中, 我们提出一个基于等级的损失函数, 使用等级信息, 并将它转换成一个在示例之间的目标距离排序 。 我们表明, 基于等级的损失适合学习数据等级表的等级表 。 我们通过对隐蔽的精细等级级班进行测试, 我们证明这种方法也能学习新等级的等级的等级正确表达方式。 基于等级的损失有两个有希望的方面, 以任何等级的等级分类都具有一般性, 可以使用任何级别的等级, 并且能够处理不完整的等级标签的数据 。