This work builds upon the Euphemism Detection Shared Task proposed in the EMNLP 2022 FigLang Workshop, and extends it to few-shot and zero-shot settings. We demonstrate a few-shot and zero-shot formulation using the dataset from the shared task, and we conduct experiments in these settings using RoBERTa and GPT-3. Our results show that language models are able to classify euphemistic terms relatively well even on new terms unseen during training, indicating that it is able to capture higher-level concepts related to euphemisms.
翻译:这项工作以EMNLLP 2022 FigLang 研讨会中提议的 " 委婉感探测共同任务 " 为基础,并将其推广到几发和零发环境。我们利用来自共同任务的数据集展示了几发和零发的配方,我们利用RoBERTA和GPT-3在这些环境中进行实验。我们的结果表明,语言模型能够对委婉词进行相对不错的分类,即使是在培训期间未见的新术语,这表明它能够捕捉到与委婉主义有关的更高层次的概念。