Neural Radiance Fields (NeRF) have demonstrated superior novel view synthesis performance but are slow at rendering. To speed up the volume rendering process, many acceleration methods have been proposed at the cost of large memory consumption. To push the frontier of the efficiency-memory trade-off, we explore a new perspective to accelerate NeRF rendering, leveraging a key fact that the viewpoint change is usually smooth and continuous in interactive viewpoint control. This allows us to leverage the information of preceding viewpoints to reduce the number of rendered pixels as well as the number of sampled points along the ray of the remaining pixels. In our pipeline, a low-resolution feature map is rendered first by volume rendering, then a lightweight 2D neural renderer is applied to generate the output image at target resolution leveraging the features of preceding and current frames. We show that the proposed method can achieve competitive rendering quality while reducing the rendering time with little memory overhead, enabling 30FPS at 1080P image resolution with a low memory footprint.
翻译:神经辐射场( NeRF) 展示了超强的新视角合成性能,但效果缓慢。 为了加快体积转换过程, 以大量内存消耗为代价提出了许多加速方法。 为了推动效率- 模拟交换的前沿, 我们探索了一个新的视角来加速内光转换, 利用一个关键的事实, 即观点变化通常在互动视图控制中是平稳和连续的。 这使我们能够利用前一些观点的信息来减少生成像素的数量以及剩余像素光线沿线的抽样点的数量。 在我们的管道中, 低分辨率特征图首先通过体积转换完成, 然后使用轻度 2D 神经转换器来生成目标分辨率的输出图像, 利用前框架和当前框架的特征。 我们显示, 拟议的方法可以实现竞争性生成质量, 同时用少量记忆管理来缩短交接时间, 使得1080P 图像解析能为30 FPS, 低记忆足迹。