Given input-output pairs from a parabolic partial differential equation (PDE) in any spatial dimension $n\geq 1$, we derive the first theoretically rigorous scheme for learning the associated Green's function $G$. Until now, rigorously learning Green's functions associated with parabolic operators has been a major challenge in the field of scientific machine learning because $G$ may not be square-integrable when $n>1$, and time-dependent PDEs have transient dynamics. By combining the hierarchical low-rank structure of $G$ together with the randomized singular value decomposition, we construct an approximant to $G$ that achieves a relative error of $\smash{\mathcal{O}(\Gamma_\epsilon^{-1/2}\epsilon)}$ in the $L^1$-norm with high probability by using at most $\smash{\mathcal{O}(\epsilon^{-\frac{n+2}{2}}\log(1/\epsilon))}$ input-output training pairs, where $\Gamma_\epsilon$ is a measure of the quality of the training dataset for learning $G$, and $\epsilon>0$ is sufficiently small. Along the way, we extend the low-rank theory of Bebendorf and Hackbusch from elliptic PDEs in dimension $1\leq n\leq 3$ to parabolic PDEs in any dimensions, which shows that Green's functions associated with parabolic PDEs admit a low-rank structure on well-separated domains.
翻译:鉴于从任何空间维度的抛物线部分差异方程式(PDE)中输入输出对配方(PDE) $\ geq 1美元,我们推出第一个在理论上严格的机制来学习相关的Green 函数$G$。到目前为止,严格学习Green与抛物线操作员相关的函数一直是科学机器学习领域的一大挑战,因为$G$在$>1美元时可能无法平方数,而基于时间的 PDEs则具有瞬态。(\ eplion_\\\ referal=G$的等级低位结构与随机化的单值分解,我们建造了一个在理论上为$smash\ mathal_cal{G$(Gammas) 的近似差值 。Plon_\\\\ lix_ lical_ legal_ ligal_ legal_ legal_ legal_ legal_ $_Bral_Bral_ $_Bral_Bral_Bral_Bral_Bral_ $_B_B_Bral_ leg_ $_ $_ leg_Bral_Bral_ $_ leg_ leg_ leg_ legal_ leg__ legal_ral_ legal_ legal____ legal_ legal_ legal__________ $_ $_ legal__________________l_l_l______________l_l_l_l______l___________________________________________________________l_l_____________________________