This work proposes novel synchronous, asynchronous, and session-based designs for energy-efficient massive multiple-input multiple-output networks to support federated learning (FL). The synchronous design relies on strict synchronization among users when executing each FL communication round, while the asynchronous design allows more flexibility for users to save energy by using lower computing frequencies. The session-based design splits the downlink and uplink phases in each FL communication round into separate sessions. In this design, we assign users such that one of the participating users in each session finishes its transmission and does not join the next session. As such, more power and degrees of freedom will be allocated to unfinished users, leading to higher rates, lower transmission times, and hence, a higher energy efficiency. In all three designs, we use zero-forcing processing for both uplink and downlink, and develop algorithms that optimize user assignment, time allocation, power, and computing frequencies to minimize the energy consumption at the base station and users, while guaranteeing a predefined maximum execution time of one FL communication round.
翻译:这项工作提出了新颖的同步、非同步和基于会议的设计,用于支持联合学习(FL)的节能大型多投入多产出网络。同步设计依赖于用户在执行每个FL通信回合时的严格同步,而无同步设计允许用户通过使用较低计算频率节省能源的更大灵活性。基于会场的设计将每个FL通信回合的下行和上端连接阶段分成不同的会议。在设计中,我们指派用户,让参加每次会议的用户之一完成传输,而不是参加下次会议。因此,更多的电力和自由度将分配给未完成的用户,从而导致更高的速度、较低的传输时间,从而提高能效。在所有三个设计中,我们使用零叉处理,用于上行和下行连接,并开发最优化用户分配、时间分配、电力和计算频率的算法,以最大限度地减少基地站和用户的能源消耗,同时保证预先确定一个FL通信回合的最大执行时间。