Current works formulate facial action unit (AU) recognition as a supervised learning problem, requiring fully AU-labeled facial images during training. It is challenging if not impossible to provide AU annotations for large numbers of facial images. Fortunately, AUs appear on all facial images, whether manually labeled or not, satisfy the underlying anatomic mechanisms and human behavioral habits. In this paper, we propose a deep semi-supervised framework for facial action unit recognition from partially AU-labeled facial images. Specifically, the proposed deep semi-supervised AU recognition approach consists of a deep recognition network and a discriminator D. The deep recognition network R learns facial representations from large-scale facial images and AU classifiers from limited ground truth AU labels. The discriminator D is introduced to enforce statistical similarity between the AU distribution inherent in ground truth AU labels and the distribution of the predicted AU labels from labeled and unlabeled facial images. The deep recognition network aims to minimize recognition loss from the labeled facial images, to faithfully represent inherent AU distribution for both labeled and unlabeled facial images, and to confuse the discriminator. During training, the deep recognition network R and the discriminator D are optimized alternately. Thus, the inherent AU distributions caused by underlying anatomic mechanisms are leveraged to construct better feature representations and AU classifiers from partially AU-labeled data during training. Experiments on two benchmark databases demonstrate that the proposed approach successfully captures AU distributions through adversarial learning and outperforms state-of-the-art AU recognition work.
翻译:目前的工作将面部行动股(AU)确定为受监督的学习问题,在培训期间需要完全由AU标记的面部图像。如果不是不可能,也很难提供大量面部图像的AU说明。幸运的是,AU在所有面部图像上出现,无论是否手工贴标签,都符合基本的解剖机制和人类行为习惯。在本文中,我们提议了一个深度半监督框架,从部分由AU标记的面部图像中识别面部行动股。具体地说,拟议的深半监督的非盟确认方法包括一个深度的识别网络和一个导师D。深层识别网络R从大型面部图像中学习AU的面部表象,从有限的地面真实非盟标签标签标签标签标签标签和人类行为习惯中固有的AU的分布在统计上具有相似性。深入的半监督框架网络旨在尽可能减少从标有标签的面部图像的识别损失,忠实地代表非盟在标签和未贴标签的面部图像中进行内部的分布,并混淆CEUA的外的面部识别网络和部分由AU的升级的分类结构结构展示产生。在AU的升级的升级的分类和升级的分类结构中,通过SUIL和升级的分类的分类的模结构中,通过两个的分类的分类的模模版的分类的分类的分类的分布是优化的自我的分类的分类的分类的分类的分类的分类的分布。