This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform competing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, with and without replacement.


翻译:本文针对从受约束的观测中估算一个未知值的经典问题,得出了信任间隔(CI)和时间一致性信任序列(CS),用于估算从受约束的观测中得出一个未知值的典型问题。我们提出了一个得出浓度界限的一般方法,可以被看作是著名的Chernoff方法的概括化(和改进 ) 。 在文件的心脏上,它是基于产生一个新的非阴性混合马丁鱼的类别,与赌注和混合物方法有着密切的联系。我们展示了如何将这些想法扩大到抽样而不替换,另一个经过大量研究的问题。 在所有情况下,我们的界限都适应了未知的差异,在经验上大大超越了基于Hoffding或经验性Bernstein不平等及其最近超martingal一般化的相互竞争方法。简言之,我们为四个基本问题建立了新的状态,即CS和CI作为约束手段,有和无替代手段。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月28日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员