Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. Inspired by the recent work on binary cyclic codes published in IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 7842-7849, 2022, and the arXiv paper arXiv:2301.06446, the objectives of this paper are the construction and analyses of four families of ternary cyclic codes with length $n=3^m-1$ for odd $m$ and dimension $k \in \{n/2, (n + 2)/2\}$ whose minimum distances have a square-root-like lower bound. Their duals have parameters $[n, k^\perp, d^\perp]$, where $k^\perp \in \{n/2, (n- 2)/2\}$ and $d^\perp$ also has a square-root-like lower bound. These families of codes and their duals contain distance-optimal cyclic codes.
翻译:Cyclic代码是一种有趣的线性代码类型,由于其高效的编码和解码算法,在通信和储存系统中具有广泛的应用。受到最近在IEEE Trans.Inf. Theory, vol. 68, no. 12, pp. 7842-7849, 2022, 和ArXiv arXiv:2301.06446号文件出版的双环代码方面开展的工作的启发,本文件的目标是建造和分析四个长于n=3cmm-1美元的双环代码家庭,其长度为奇特美元和尺寸$@n/2 (n + 2)/2 美元,其最低距离的平底范围较低。它们的双倍值有参数 $[n, k<unk> perp, d<unk> perp]$, 其中$kperp \ in <unk> n/2, (n-2) 和 $dd<unk> perp$, 其值也具有平底值较低的约束。这些代码的家族及其双底值含有远程自行车代码。</s>