This paper focuses on filter-level network pruning. A novel pruning method, termed CLR-RNF, is proposed. We first reveal a "long-tail" long-tail pruning problem in magnitude-based weight pruning methods, and then propose a computation-aware measurement for individual weight importance, followed by a Cross-Layer Ranking (CLR) of weights to identify and remove the bottom-ranked weights. Consequently, the per-layer sparsity makes up of the pruned network structure in our filter pruning. Then, we introduce a recommendation-based filter selection scheme where each filter recommends a group of its closest filters. To pick the preserved filters from these recommended groups, we further devise a k-Reciprocal Nearest Filter (RNF) selection scheme where the selected filters fall into the intersection of these recommended groups. Both our pruned network structure and the filter selection are non-learning processes, which thus significantly reduce the pruning complexity, and differentiate our method from existing works. We conduct image classification on CIFAR-10 and ImageNet to demonstrate the superiority of our CLR-RNF over the state-of-the-arts. For example, on CIFAR-10, CLR-RNF removes 74.1% FLOPs and 95.0% parameters from VGGNet-16 with even 0.3\% accuracy improvements. On ImageNet, it removes 70.2% FLOPs and 64.8% parameters from ResNet-50 with only 1.7% top-5 accuracy drops. Our project is at https://github.com/lmbxmu/CLR-RNF.


翻译:本文侧重于过滤级别网络的运行。 因此, 我们提出了一个叫做 CLR- RNF 的新型过滤方法。 我们首先在基于星等的重量裁剪方法中显示一个“ 长尾尾” 长尾裁剪问题, 然后提出个人重量重要性的计算觉度测量, 之后是跨双层排行权重( CLR ), 以识别和删除最底层排位重量。 因此, 过滤器运行过程中, 每层的宽度构成了剪裁网络结构。 然后, 我们引入了一个基于建议的过滤器选择方案, 每个过滤器都推荐一组最接近的精度过滤器。 为了从这些推荐的组中选择保存的过滤器, 我们进一步设计了一个 kRanslourn Neest Ferfer( RNF) 。 我们的剪裁剪裁网络架构和过滤器是非学习过程, 这样可以大大降低剪裁的复杂程度, 并且区分我们的方法与现有的工程。 我们在 CFAR- 10 和图像 Net 进行图像分类, 以显示我们的 CR- RR- 10 的精度为 CR- R 。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
320+阅读 · 2020年11月26日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员