This paper proposes a simple yet efficient high-altitude wind nowcasting pipeline. It processes efficiently a vast amount of live data recorded by airplanes over the whole airspace and reconstructs the wind field with good accuracy. It creates a unique context for each point in the dataset and then extrapolates from it. As creating such context is computationally intensive, this paper proposes a novel algorithm that reduces the time and memory cost by efficiently fetching nearest neighbors in a data set whose elements are organized along smooth trajectories that can be approximated with piece-wise linear structures. We introduce an efficient and exact strategy implemented through algebraic tensorial operations, which is well-suited to modern GPU-based computing infrastructure. This method employs a scalable Euclidean metric and allows masking data points along one dimension. When applied, this method is more efficient than plain Euclidean k-NN and other well-known data selection methods such as KDTrees and provides a several-fold speedup. We provide an implementation in PyTorch and a novel data set to allow the replication of empirical results.
翻译:本文提出一个简单而高效的高空风即时投射管道。 它高效地处理飞机在整个空域上记录的大量现场数据, 并精准地重建风场。 它为数据集中的每个点创造独特的背景, 然后从中外推。 由于创建这种背景是计算密集的, 本文提出一种新的算法, 通过在数据集中高效率地获取最接近的邻居的时间和记忆成本, 该数据集的元素可以与平滑的轨迹组织起来, 可以与小片线性结构相近。 我们引入了高效和精确的战略, 通过代数阵列阵列操作实施, 这对于现代基于 GPU 的计算基础设施非常合适。 这种方法使用可缩放的 Euclidean 参数, 并允许将数据点隐藏在一个方面。 当应用时, 这种方法比普通的 Euclidean k- NNN 和其他著名的数据选择方法( 如 KDTrees) 更有效率, 并提供几倍的速度。 我们在 PyTorrch 和一套新数据集中实施, 以便复制经验结果。