Edge computing has become a popular paradigm where services and applications are deployed at the network edge closer to the data sources. It provides applications with outstanding benefits, including reduced response latency and enhanced privacy protection. For emerging advanced applications, such as autonomous vehicles, industrial IoT, and metaverse, further research is needed. This is because such applications demand ultra-low latency, hyper-connectivity, and dynamic and reliable service provision, while existing approaches are inadequate to address the new challenges. Hence, we envision that the future edge computing is moving towards distributed intelligence, where heterogeneous edge nodes collaborate to provide services in large-scale and geo-distributed edge infrastructure. We thereby propose Edge-as-a-Service (EaaS) to enable distributed intelligence. EaaS jointly manages large-scale cross-node edge resources and facilitates edge autonomy, edge-to-edge collaboration, and resource elasticity. These features enable flexible deployment of services and ubiquitous computation and intelligence. We first give an overview of existing edge computing studies and discuss their limitations to articulate the motivation for proposing EaaS. Then, we describe the details of EaaS, including the physical architecture, proposed software framework, and benefits of EaaS. Various application scenarios, such as real-time video surveillance, smart building, and metaverse, are presented to illustrate the significance and potential of EaaS. Finally, we discuss several challenging issues of EaaS to inspire more research towards this new edge computing framework.


翻译:电磁计算已成为一种流行模式,在离数据来源更近的网络边缘部署服务和应用程序,它提供各种应用,具有突出的效益,包括降低反应延迟和增强隐私保护。对于新兴先进应用,如自主车辆、工业IoT和逆向,需要进一步研究。这是因为这些应用需要超低延迟、超连接以及动态和可靠的服务提供,而现有方法不足以应对新的挑战。因此,我们设想未来边缘计算将转向分布式情报,其中各异边缘节点合作提供大规模和地理分布边缘基础设施的服务。我们因此提议Edge-as-Service(Ea-S)系统(Ea-Service)系统(Ea-S-Service)系统(Ea-s-Service)系统(Ea-service)系统(Ea-S-Service)系统(Ea-S-S-Servirontive )系统(Ea-Sa-Serview )系统(Ea-Ea-Slaveal Produal Produtional Production)系统框架,我们把Ea-Sa-Sa(Ea-Sa)系统、Ea-laim 和Ea-laimal 系统(Ea-laimal Providual Produ)系统(Ea-sia)系统(Ea-vidual Proview Proview Provialisal)系统(E-view)系统)系统(Evical )的物理图)系统框架,我们最后将展示了E-Sil)的物理、E-sibil 和Stural)的系统框架的物理图的物理图图,我们向。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
38+阅读 · 2021年8月31日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关论文
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员