We study unsupervised data selection for semi-supervised learning (SSL), where a large-scale unlabeled data is available and a small subset of data is budgeted for label acquisition. Existing SSL methods focus on learning a model that effectively integrates information from given small labeled data and large unlabeled data, whereas we focus on selecting the right data for SSL without any label or task information, in an also stark contrast to supervised data selection for active learning. Intuitively, instances to be labeled shall collectively have maximum diversity and coverage for downstream tasks, and individually have maximum information propagation utility for SSL. We formalize these concepts in a three-step data-centric SSL method that improves FixMatch in stability and accuracy by 8% on CIFAR-10 (0.08% labeled) and 14% on ImageNet-1K (0.2% labeled). Our work demonstrates that a small compute spent on careful labeled data selection brings big annotation efficiency and model performance gain without changing the learning pipeline. Our completely unsupervised data selection can be easily extended to other weakly supervised learning settings.


翻译:我们研究的是用于半监督学习的不受监督的数据选择(SSL),那里有大规模无标签数据,有少量数据用于获取标签。现有的SSL方法侧重于学习一种模型,有效地整合来自给定的小标签数据和大无标签数据的信息,而我们则侧重于在没有任何标签或任务信息的情况下为SSL选择正确的数据,这与用于积极学习的受监督数据选择形成鲜明对比。直觉地说,要贴上标签的事例,对于下游任务应具有最大的多样性和覆盖面,而对于SSL,则个别地拥有最大的信息传播功能。我们将这些概念正式化为三步以数据为中心的SSL方法,在CIFAR-10(0.08%贴上标签)和图像Net-1K(0.2%贴上标签)上将固定和准确率提高8%。我们的工作表明,在谨慎标签数据选择方面花费的少量计算,在不改变学习管道的情况下,会带来很大的注意效率和模型性能增益。我们完全未超超过的数据选择可以很容易推广到其他薄弱的学习环境。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年12月8日
Arxiv
16+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员