Vision Transformers have witnessed prevailing success in a series of vision tasks. However, these Transformers often rely on extensive computational costs to achieve high performance, which is burdensome to deploy on resource-constrained devices. To alleviate this issue, we draw lessons from depthwise separable convolution and imitate its ideology to design an efficient Transformer backbone, i.e., Separable Vision Transformer, abbreviated as SepViT. SepViT helps to carry out the local-global information interaction within and among the windows in sequential order via a depthwise separable self-attention. The novel window token embedding and grouped self-attention are employed to compute the attention relationship among windows with negligible cost and establish long-range visual interactions across multiple windows, respectively. Extensive experiments on general-purpose vision benchmarks demonstrate that SepViT can achieve a state-of-the-art trade-off between performance and latency. Among them, SepViT achieves 84.2% top-1 accuracy on ImageNet-1K classification while decreasing the latency by 40%, compared to the ones with similar accuracy (e.g., CSWin). Furthermore, SepViT achieves 51.0% mIoU on ADE20K semantic segmentation task, 47.9 AP on the RetinaNet-based COCO detection task, 49.4 box AP and 44.6 mask AP on Mask R-CNN-based COCO object detection and instance segmentation tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月5日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月5日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
12+阅读 · 2018年9月5日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员