I study endogenous learning dynamics for people who misperceive intertemporal correlations in random sequences. Biased agents face an optimal-stopping problem. They are uncertain about the underlying distribution and learn its parameters from predecessors. Agents stop when early draws are "good enough," so predecessors' experiences contain negative streaks but not positive streaks. When agents wrongly expect systematic reversals (the "gambler's fallacy"), they understate the likelihood of consecutive below-average draws, converge to over-pessimistic beliefs about the distribution's mean, and stop too early. Agents uncertain about the distribution's variance overestimate it to an extent that depends on predecessors' stopping thresholds. I also analyze how other misperceptions of intertemporal correlation interact with endogenous data censoring.


翻译:我为那些在随机序列中错误的时际关系的人研究内在的学习动态。 双轨代理商面临一个最佳的阻断问题。 他们对于其基本分布并不确定, 并向前身学习参数。 代理商在早期抽取时停止“ 足够好 ”, 所以前任代理商的经验包含负数, 而不是正数。 当代理商错误地期望系统逆转( “ gambler的谬误 ” ) 时, 他们低估了连续低于平均抽取的可能性, 集中到了对分配平均值的过度悲观信念, 并过早停止。 代理商对分配差异的不确定性高估程度取决于前身的停止阈值。 我还分析了其他对时际相互关系的误解如何与内生数据审查相互作用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Inferred successor maps for better transfer learning
Arxiv
3+阅读 · 2018年10月11日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员