Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.
翻译:最近对神经科学的研究强调,根据FMRI数据为临床预测而建立的功能性脑网络具有巨大的潜力。然而,传统的功能性脑网络对下游预测任务十分吵闹而且不了解下游预测任务,同时也与深图形神经网络模型不相容。为了在基于网络的FMRI分析中充分释放GNNs的力量,我们开发了FBNETGEN,这是一个通过深层脑网络生成获得任务感知和可解释的FMRI分析框架。特别是,我们开发了(1) 突出感兴趣的区域(ROI)特征提取,(2) 大脑网络生成和(3) 与GNNS的临床预测,这是在特定预测任务指导下的端到端培训模式。与这一过程一起,关键的新构件是图形生成器,它学会将原始的时间序列特性转换为以任务为导向的脑网络。我们可学习的图表还提供独特的解释,通过突出与预测有关的大脑区域。在两个数据集上的综合实验,即最近发布的和目前可公开使用的FBNFB-RO系统高级数据解释系统。