Data driven approaches for decision making applied to automated driving require appropriate generalization strategies, to ensure applicability to the world's variability. Current approaches either do not generalize well beyond the training data or are not capable to consider a variable number of traffic participants. Therefore we propose an invariant environment representation from the perspective of the ego vehicle. The representation encodes all necessary information for safe decision making. To assess the generalization capabilities of the novel environment representation, we train our agents on a small subset of scenarios and evaluate on the entire diverse set of scenarios. Here we show that the agents are capable to generalize successfully to unseen scenarios, due to the abstraction. In addition we present a simple occlusion model that enables our agents to navigate intersections with occlusions without a significant change in performance.
翻译:用于自动驾驶的决策数据驱动方法需要适当的一般化战略,以确保适用于世界的变异性。目前的方法不是没有超出培训数据的范围,就是无法考虑交通参与者的可变数量。因此,我们建议从自我驱动器的角度来代表一个无差别的环境。代表编码了安全决策所需的一切必要信息。为了评估新环境代表的概括性能力,我们培训我们的代理商,使其掌握一小撮假设,并评价整个不同的假设情况。我们在这里表明,由于抽象性,这些代理商能够成功地概括到看不见的假设情况。此外,我们提出了一个简单的排除模型,使我们的代理商能够在不显著改变性能的情况下与隔离交汇。