Reinforcement Learning (RL) is a promising approach for solving various control, optimization, and sequential decision making tasks. However, designing reward functions for complex tasks (e.g., with multiple objectives and safety constraints) can be challenging for most users and usually requires multiple expensive trials (reward function hacking). In this paper we propose a specification language (Inkling Goal Specification) for complex control and optimization tasks, which is very close to natural language and allows a practitioner to focus on problem specification instead of reward function hacking. The core elements of our framework are: (i) mapping the high level language to a predicate temporal logic tailored to control and optimization tasks, (ii) a novel automaton-guided dense reward generation that can be used to drive RL algorithms, and (iii) a set of performance metrics to assess the behavior of the system. We include a set of experiments showing that the proposed method provides great ease of use to specify a wide range of real world tasks; and that the reward generated is able to drive the policy training to achieve the specified goal.


翻译:强化学习(RL)是解决各种控制、优化和顺序决策任务的一个很有希望的方法,然而,为复杂任务设计奖励功能(例如,具有多重目标和安全限制)对大多数用户来说可能具有挑战性,通常需要多重昂贵的试验(奖励功能黑客 ) 。在本文件中,我们提出了用于复杂控制和优化任务的规格语言(引入目标规格),非常接近自然语言,使执业者能够集中关注问题规格,而不是奖励功能黑客。我们框架的核心要素是:(一) 绘制高层次语言图,以适应控制和优化任务的上游时间逻辑;(二) 新型自动制导的密集奖励生成,可用于驱动RL算法,以及(三) 一套用于评估系统行为的性能衡量标准。我们包括一系列实验,表明拟议的方法非常容易使用,以具体说明广泛的真实世界任务;以及所产生的奖励能够推动政策培训,以实现规定的目标。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
8+阅读 · 2018年7月12日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员