The zero-shot scenario for speech generation aims at synthesizing a novel unseen voice with only one utterance of the target speaker. Although the challenges of adapting new voices in zero-shot scenario exist in both stages -- acoustic modeling and vocoder, previous works usually consider the problem from only one stage. In this paper, we extend our previous Glow-WaveGAN to Glow-WaveGAN 2, aiming to solve the problem from both stages for high-quality zero-shot text-to-speech and any-to-any voice conversion. We first build a universal WaveGAN model for extracting latent distribution $p(z)$ of speech and reconstructing waveform from it. Then a flow-based acoustic model only needs to learn the same $p(z)$ from texts, which naturally avoids the mismatch between the acoustic model and the vocoder, resulting in high-quality generated speech without model fine-tuning. Based on a continuous speaker space and the reversible property of flows, the conditional distribution can be obtained for any speaker, and thus we can further conduct high-quality zero-shot speech generation for new speakers. We particularly investigate two methods to construct the speaker space, namely pre-trained speaker encoder and jointly-trained speaker encoder. The superiority of Glow-WaveGAN 2 has been proved through TTS and VC experiments conducted on LibriTTS corpus and VTCK corpus.


翻译:尽管在两个阶段 -- -- 声音模型和vocoder -- -- 都存在在零点情景下调整新声音的挑战,但以往的工作通常只考虑一个阶段的问题。在本文件中,我们将我们以前的Glow-WaveGAN和Glow-WaveGAN 2推广到Glow-WaveGAN 2, 目的是解决两个阶段的高质量零点文本到语音和任何可逆语音转换的问题。我们首先可以建立一个通用的WaveGAN模型,用于提取潜在语音分配(z)美元,并从中重建波形。然后,基于流的音模型只需要从文本中学习同样的$p(z)美元。这自然避免了音模型和电码之间的不匹配,导致在没有模型调整的情况下高质量生成的语音。基于连续的语音空间和可逆的语音属性,可以为任何发言者获得有条件的分发,因此我们可以进一步进行高质量的零点T-C语言分配,从而可以进一步为新的G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-L-G-G-G-G-G-G-G-G-G-G-L-G-G-G-G-G-G-G-G-L-L-G-G-G-G-G-L-G-G-L-L-G-L-G-G-G-L-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-L-G-G-G-L-L-L-L-L-L-G-G-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-G-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-B-B-B-B-B-B-B

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
19+阅读 · 2021年1月14日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员