Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

信息处理和管理(IPM)在计算机与信息科学的交叉点上发布了有关领域,包括但不限于商业、市场营销、广告、社交计算和信息技术等领域的理论、方法或应用的前沿研究。该杂志的目的是通过为及时传播高级和热门问题提供有效的论坛,从而在计算机与信息科学的交叉点上增进研究人员和从业人员的利益。该期刊对原始研究文章、研究调查文章、研究方法文章以及涉及研究关键应用的文章特别感兴趣。官网地址:http://dblp.uni-trier.de/db/journals/ipm/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员