Let $G$ be a group and let $k$ be a field. Kaplansky's direct finiteness conjecture states that every one-sided unit of the group ring $k[G]$ must be a two-sided unit. In this paper, we establish a geometric direct finiteness theorem for endomorphisms of symbolic algebraic varieties. Whenever $G$ is a sofic group or more generally a surjunctive group, our result implies a generalization of Kaplansky's direct finiteness conjecture for the near ring $R(k, G)$ which is $k[X_g\colon g \in G]$ as a group and which contains naturally $k[G]$ as the subring of homogeneous polynomials of degree one. We also prove that Kaplansky's stable finiteness conjecture is a consequence of Gottschalk's Surjunctivity conjecture.
翻译:让$G$成为一组, 并让$k美元成为一个字段。 Kaplansky 的直接有限性猜想显示, 集团的每个单方单位 $k[ G]$必须是一个双面单位。 在本文中, 我们为象征性代数品种的内晶学系建立一个几何直接有限性定理。 当$G$是一个 sofic 组, 或者更一般地说是一个平行组时, 我们的结果意味着对Kaplansky 直接有限性预测的概括化, 即Kaplansky 的近环 $R( k, G) 美元( k, g) 直接有限性预测, 即 $k[ X_ g\ cron g\ in G] 美元, 是一个组, 其中自然含有 $k[ G] $ 作为一级同质多数值的子环。 我们还证明, Kaplanky 的稳定有限性定性测算是Gottchak's 的相交性预测的结果 。