Event-based dynamic vision sensors provide very sparse output in the form of spikes, which makes them suitable for low-power applications. Convolutional spiking neural networks model such event-based data and develop their full energy-saving potential when deployed on asynchronous neuromorphic hardware. Event-based vision being a nascent field, the sensitivity of spiking neural networks to potentially malicious adversarial attacks has received little attention so far. We show how white-box adversarial attack algorithms can be adapted to the discrete and sparse nature of event-based visual data, and demonstrate smaller perturbation magnitudes at higher success rates than the current state-of-the-art algorithms. For the first time, we also verify the effectiveness of these perturbations directly on neuromorphic hardware. Finally, we discuss the properties of the resulting perturbations, the effect of adversarial training as a defense strategy, and future directions.
翻译:以事件为基础的动态视觉传感器以钉子的形式提供非常稀少的产出,使其适合低功率应用。 革命性神经网络模拟这种以事件为基础的数据,并在无同步神经变形硬件上部署时开发其全部节能潜力。 以事件为基础的视觉传感器是一个新生领域,震动神经网络对潜在恶意对抗攻击的敏感性迄今没有受到多少注意。 我们展示了白箱对抗性攻击算法如何适应以事件为基础的视觉数据的离散和稀疏性质,并展示出比目前最先进的算法的成功率更低的扰动数量。 我们还首次核查了这些干扰对神经变形硬件的直接有效性。 最后,我们讨论了由此产生的扰动的特性、以对抗性训练作为防御战略的影响以及未来的方向。