The pooling of prior opinions is an important area of research and has been for a number of decades. The idea is to obtain a single belief probability distribution from a set of expert opinion belief distributions. The paper proposes a new way to provide a resultant prior opinion based on a minimization of information principle. This is done in the square-root density space, which is identified with the positive orthant of Hilbert unit sphere of differentiable functions. It can be shown that the optimal prior is easily identified as an extrinsic mean in the sphere. For distributions belonging to the exponential family, the necessary calculations are exact, and so can be directly applied. The idea can also be adopted for any neighbourhood of a chosen base prior and spanned by a finite set of ``contaminating" directions.
翻译:汇集先前的意见是一个重要的研究领域,已经存在几十年了。 想法是从一组专家意见信仰分布中获得单一的概率分布。 论文提出一种新的方法, 以尽量减少信息原则为基础, 提供由此而产生的先前意见。 这是在平方根密度空间进行的, 它与Hilbert单位范围中不同功能的正值或正值相匹配。 可以证明, 最优的先期很容易被确定为球体中的极限值。 对于指数式家族的分布, 必要的计算是准确的, 因而可以直接应用 。 这个想法也可以在选择的基座的任何一个街区被采用, 之前和跨过一定的“ contaminting” 方向 。