Although the field of distributed optimization is well-developed, relevant literature focused on the application of distributed optimization to multi-robot problems is limited. This survey constitutes the second part of a two-part series on distributed optimization applied to multi-robot problems. In this paper, we survey three main classes of distributed optimization algorithms -- distributed first-order methods, distributed sequential convex programming methods, and alternating direction method of multipliers (ADMM) methods -- focusing on fully-distributed methods that do not require coordination or computation by a central computer. We describe the fundamental structure of each category and note important variations around this structure, designed to address its associated drawbacks. Further, we provide practical implications of noteworthy assumptions made by distributed optimization algorithms, noting the classes of robotics problems suitable for these algorithms. Moreover, we identify important open research challenges in distributed optimization, specifically for robotics problem.
翻译:虽然分布式优化领域发展良好,但侧重于将分布式优化应用于多机器人问题的相关文献有限,调查是关于分配式优化应用于多机器人问题系列的两部分的第二部分。在本文件中,我们调查了分布式优化算法的三大类 -- -- 分布式一阶方法、分布式相继曲线编程方法和乘数方法交替方向方法 -- -- 侧重于完全分布式方法,不需要中央计算机协调或计算。我们描述了每个类别的基本结构,注意到围绕这一结构出现的重要变化,目的是解决其相关的缺陷。此外,我们提供了分布式优化算法所作的值得注意的假设的实际影响,指出了适合这些算法的机器人问题类别。此外,我们确定了分配式优化中的重要公开研究挑战,特别是针对机器人问题。