We propose a generalised framework for Bayesian Structural Equation Modelling (SEM) that can be applied to a variety of data types. The introduced framework focuses on the approximate zero approach, according to which parameters that would before set to zero (e.g. factor loadings) are now formulated to be approximate zero. It extends previously suggested models by \citeA{MA12} and can handle continuous, binary, and ordinal data. Moreover, we propose a novel model assessment paradigm aiming to address shortcomings of posterior predictive $p-$values, which provide the default metric of fit for Bayesian SEM. The introduced model assessment procedure monitors the out-of-sample predictive performance of the fitted model, and together with a list of guidelines we provide, one can investigate whether the hypothesised model is supported by the data. We incorporate scoring rules and cross-validation to supplement existing model assessment metrics for Bayesian SEM. We study the performance of the proposed methodology via simulations. The model for continuous and binary data is fitted to data on the `Big-5' personality scale and the Fagerstrom test for nicotine dependence respectively.
翻译:我们为巴伊西亚结构方程式模型(SEM)提出了一个可适用于各种数据类型的通用框架; 引入的框架侧重于近似零方法,根据这一方法,在设定为零之前的参数(例如要素负荷)现在的拟订大约为零; 扩展以前建议的模型,由\citeA{MA12}提供,可以处理连续、二进制和交点数据; 此外,我们提出了一个新的模型评估模式,旨在解决后方预测值$p-$值的缺陷,为巴伊西亚SEM提供默认的适合度量; 引入的模型评估程序监测装配模型的外面预测性能,连同我们提供的指导方针清单,可以调查假设模型是否得到数据的支持; 我们纳入了评分规则和交叉校准,以补充巴伊西亚SEM的现有模型评估指标; 我们通过模拟研究拟议方法的性能。 连续和二进制数据模型分别与`Big-5'个人格尺度上的数据匹配,以及胶质测试的可靠性。