This paper shows that, with high probability, randomly punctured Reed-Solomon codes over fields of polynomial size achieve the list decoding capacity. More specifically, we prove that for any $\epsilon>0$ and $R\in (0,1)$, with high probability, randomly punctured Reed-Solomon codes of block length $n$ and rate $R$ are $\left(1-R-\epsilon, O({1}/{\epsilon})\right)$ list decodable over alphabets of size at least $2^{\mathrm{poly}(1/\epsilon)}n^2$. This extends the recent breakthrough of Brakensiek, Gopi, and Makam (STOC 2023) that randomly punctured Reed-Solomon codes over fields of exponential size attain the generalized Singleton bound of Shangguan and Tamo (STOC 2020).
翻译:本文证明了,对于任意$\epsilon>0$和$R\in(0,1)$,高概率下,长度为$n$、速率为$R$的随机截断的Reed-Solomon码在大小至少为$2^{\mathrm{poly}(1/\epsilon)}n^2$的字母表上,实现了$(1-R-\epsilon, O({1}/{\epsilon}))$的列表解码能力。这扩展了Brakensiek、Gopi和Makam (STOC 2023)的最新突破,他们证明了随机截断的Reed-Solomon码在指数大小的域上达到了Shangguan和Tamo (STOC 2020)的广义Singleton界。