This paper shows that, with high probability, randomly punctured Reed-Solomon codes over fields of polynomial size achieve the list decoding capacity. More specifically, we prove that for any $\epsilon>0$ and $R\in (0,1)$, with high probability, randomly punctured Reed-Solomon codes of block length $n$ and rate $R$ are $\left(1-R-\epsilon, O({1}/{\epsilon})\right)$ list decodable over alphabets of size at least $2^{\mathrm{poly}(1/\epsilon)}n^2$. This extends the recent breakthrough of Brakensiek, Gopi, and Makam (STOC 2023) that randomly punctured Reed-Solomon codes over fields of exponential size attain the generalized Singleton bound of Shangguan and Tamo (STOC 2020).


翻译:本文证明了,对于任意$\epsilon>0$和$R\in(0,1)$,高概率下,长度为$n$、速率为$R$的随机截断的Reed-Solomon码在大小至少为$2^{\mathrm{poly}(1/\epsilon)}n^2$的字母表上,实现了$(1-R-\epsilon, O({1}/{\epsilon}))$的列表解码能力。这扩展了Brakensiek、Gopi和Makam (STOC 2023)的最新突破,他们证明了随机截断的Reed-Solomon码在指数大小的域上达到了Shangguan和Tamo (STOC 2020)的广义Singleton界。

0
下载
关闭预览

相关内容

力闻 | Chroma: 端到端可编程式的蛋白质设计扩散模型
专知会员服务
4+阅读 · 2022年12月19日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
49+阅读 · 2021年4月24日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
力闻 | Chroma: 端到端可编程式的蛋白质设计扩散模型
专知会员服务
4+阅读 · 2022年12月19日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
49+阅读 · 2021年4月24日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员