Neural networks (NNs) have demonstrated their potential in a wide range of applications such as image recognition, decision making or recommendation systems. However, standard NNs are unable to capture their model uncertainty which is crucial for many safety-critical applications including healthcare and autonomous vehicles. In comparison, Bayesian neural networks (BNNs) are able to express uncertainty in their prediction via a mathematical grounding. Nevertheless, BNNs have not been as widely used in industrial practice, mainly because of their expensive computational cost and limited hardware performance. This work proposes a novel FPGA-based hardware architecture to accelerate BNNs inferred through Monte Carlo Dropout. Compared with other state-of-the-art BNN accelerators, the proposed accelerator can achieve up to 4 times higher energy efficiency and 9 times better compute efficiency. Considering partial Bayesian inference, an automatic framework is proposed, which explores the trade-off between hardware and algorithmic performance. Extensive experiments are conducted to demonstrate that our proposed framework can effectively find the optimal points in the design space.


翻译:神经网络(NNs)在图像识别、决策或建议系统等广泛应用中显示了其潜力,但标准NNs无法捕捉其模型不确定性,而模型不确定性对于许多安全关键应用,包括保健和自主车辆,至关重要。相比之下,Bayesian神经网络(BNNs)能够通过数学基础在预测中表达不确定性。然而,BNes没有在工业实践中被广泛使用,主要是因为其计算成本昂贵,硬件性能有限。这项工作提出了基于FPGA的新型硬件结构,以加速通过Monte Carlo 抛出得出的BNS。与其他先进的BNNN加速器相比,拟议的加速器可以达到4倍的能源效率和9倍的承受效率。考虑到部分Bayesian的推论,提出了一个自动框架,探讨硬件和算法性能之间的取舍。进行了广泛的实验,以证明我们提议的框架能够有效地找到设计空间的最佳点。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月10日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员