Driven by the critical needs of biomanufacturing 4.0, we present a probabilistic knowledge graph hybrid model characterizing complex spatial-temporal causal interdependencies of underlying bioprocessing mechanisms. It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and nonstationary dynamics. Given limited process observations, we derive a posterior distribution quantifying model uncertainty, which can facilitate mechanism learning and support robust process control. To avoid evaluation of intractable likelihood, Approximate Bayesian Computation sampling with Sequential Monte Carlo (ABC-SMC) is developed to approximate the posterior distribution. Given high stochastic and model uncertainties, it is computationally expensive to match process output trajectories. Therefore, we propose a linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary likelihood-based ABC-SMC algorithm. Through matching observed and simulated summary statistics, the proposed approach can dramatically reduce the computation cost and improve the posterior distribution approximation.
翻译:在生物制造4.0的关键需求驱动下,我们提出了一个概率知识图形混合模型,其特征是基础生物处理机制复杂的空间-时因果相互依存关系;它能够忠实地捕捉重要特性,包括非线性反应、部分观测状态和非静止动态;考虑到有限的过程观测,我们得出一个事后分配数量化模型不确定性,这可以促进机制学习和支持稳健的流程控制;为避免评估棘手的可能性,开发了近似于巴伊西亚-蒙特卡洛(ABC-SMC)的计算抽样,以近似后方分布;鉴于高度的随机性和模型不确定性,与流程输出轨迹相匹配的计算成本非常昂贵;因此,我们建议建立一个直线高斯动态海湾网络(LG-DBN),以概率为基础的ABC-SMC辅助算法;通过匹配观察到的和模拟的简要统计数据,拟议方法可以大幅降低计算成本,并改进后方分布近值。