The goal of anomaly detection is to identify observations generated by a process that is different from a reference one. An accurate anomaly detector must ensure low false positive and false negative rates. However in the online context such a constraint remains highly challenging due to the usual lack of control of the False Discovery Rate (FDR). In particular the online framework makes it impossible to use classical multiple testing approaches such as the Benjamini-Hochberg (BH) procedure. Our strategy overcomes this difficulty by exploiting a local control of the ``modified FDR'' (mFDR). An important ingredient in this control is the cardinality of the calibration set used for computing empirical $p$-values, which turns out to be an influential parameter. It results a new strategy for tuning this parameter, which yields the desired FDR control over the whole time series. The statistical performance of this strategy is analyzed by theoretical guarantees and its practical behavior is assessed by simulation experiments which support our conclusions.
翻译:暂无翻译