In this paper, we study a constrained minimization problem that arise from materials science to determine the dislocation (line defect) structure of grain boundaries. The problems aims to minimize the energy of the grain boundary with dislocation structure subject to the constraint of Frank's formula. In this constrained minimization problem, the objective function, i.e., the grain boundary energy, is nonconvex and separable, and the constraints are linear. To solve this constrained minimization problem, we modify the alternating direction method of multipliers (ADMM) with an increasing penalty parameter. We provide a convergence analysis of the modified ADMM in this nonconvex minimization problem, with settings not considered by the existing ADMM convergence studies. Specifically, in the linear constraints, the coefficient matrix of each subvariable block is of full column rank. This property makes each subvariable minimization strongly convex if the penalty parameter is large enough, and contributes to the convergence of ADMM without any convex assumption on the entire objective function. We prove that the limit of the sequence from the modified ADMM is primal feasible and is the stationary point of the augmented Lagrangian function. Furthermore, we obtain sufficient conditions to show that the objective function is quasi-convex and thus it has a unique minimum over the given domain. Numerical examples are presented to validate the convergence of the algorithm, and results of the penalty method, the augmented Lagrangian method, and the modified ADMM are compared.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年3月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2021年3月25日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员