We study the class of dependence models for spatial data obtained from Cauchy convolution processes based on different types of kernel functions. We show that the resulting spatial processes have appealing tail dependence properties, such as tail dependence at short distances and independence at long distances with suitable kernel functions. We derive the extreme-value limits of these processes, study their smoothness properties, and detail some interesting special cases. To get higher flexibility at sub-asymptotic levels and separately control the bulk and the tail dependence properties, we further propose spatial models constructed by mixing a Cauchy convolution process with a Gaussian process. We demonstrate that this framework indeed provides a rich class of models for the joint modeling of the bulk and the tail behaviors. Our proposed inference approach relies on matching model-based and empirical summary statistics, and an extensive simulation study shows that it yields accurate estimates. We demonstrate our new methodology by application to a temperature dataset measured at 97 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a very good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.


翻译:我们根据不同类型的内核功能,对从卷土重来过程中获得的空间数据依赖模型的类别进行研究,我们发现,由此形成的空间过程具有吸引尾部依赖特性,例如短距离尾部依赖和长距离独立,具有适当的内核功能。我们从这些过程的极端价值限度中得出这些过程的顺利性,研究其顺利性,并细化一些有趣的特殊案例。为了在次防波层获得更大的灵活性,并单独控制散装和尾部依赖特性,我们进一步提出空间模型,通过将卷土重来进程与高斯进程混合来构建空间模型。我们证明,这一框架确实为联合模拟散装和尾部行为提供了丰富的模型。我们提议的推论方法依赖于基于模型和实验性汇总的匹配性统计,而一项广泛的模拟研究表明,它得出了准确的估计数。我们通过应用美国俄克拉荷马州97个监测站测量的温度数据集,展示了我们的新方法。我们提议的模型非常适合数据,并且准确地捕捉散装和尾部依赖结构。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员