This work deals with the problem of gathering of $n$ oblivious mobile entities, called robots, with limited visibility, at a point (not known beforehand) placed on an infinite triangular grid. Earlier works of gathering mostly considered the robots either on a plane or on a circle or on a rectangular grid under both full and limited visibility. In the triangular grid, there are two works to the best of our knowledge. The first one is arbitrary pattern formation where full visibility is considered (\cite{C21}). The other one considers seven robots with 2- hop visibility that form a hexagon with one robot in the center of the hexagon in a collision-less environment under a fully synchronous scheduler (\cite{ShibataOS00K21}). In this work, we first show that gathering on a triangular grid with 1-hop vision of robots is not possible even under a fully synchronous scheduler if the robots do not agree on any axes. So one axis agreement has been considered in this work (i.e., the robots agree on a direction and its orientation). With this capability of robots, this work shows that a swarm of any number of robots with 1-hop visibility can gather within a finite time even when the scheduler is asynchronous.
翻译:这项工作涉及在无限三角网格上的某个点(事先不为人知)收集美元隐蔽的移动实体(称为机器人,其可见度有限)的问题。 早期的收集工作大多将机器人视为在飞机上或圆或矩形网格上的机器人, 在完全和有限的可见度之下。 在三角网格中,我们最了解的是两种工作。 第一个是考虑完全可见性的任意模式形成(\cite{C21})。 另一个是考虑在完全同步的排程器下,在无碰撞环境中与一个机器人形成六边形的二上可见度的7个机器人。 在完全同步的排程器下(\cite{ShibataOS00K21}),我们首先显示,如果机器人在任何轴上都无法达成一致,那么在一个完全同步的三角网格上聚集就是不可能的。 因此,在这项工作中,一个轴线协议(即机器人在完全同步的环境中与一个无碰撞环境中的机器人形成方向及其方向和方向。 ) 有了这种能力, 机器人的能见度, 当机器人的能见度在1号内, 时, 工作会显示, 当机器人的可稳定地显示, 机器人的能在任何时间表内, 。