The quality and quantity of data used for training greatly influence the performance and effectiveness of deep learning models. In the context of error correction, it is essential to generate high-quality samples that are neither excessively noisy nor entirely correct but close to the decoding region's decision boundary. To accomplish this objective, this paper utilizes a restricted version of a recent result on Importance Sampling (IS) distribution for fast performance evaluation of linear codes. The IS distribution is used over the segmented observation space and integrated with active learning. This combination allows for the iterative generation of samples from the shells whose acquisition functions, defined as the error probabilities conditioned on each shell, fall within a specific range. By intelligently sampling based on the proposed IS distribution, significant improvements are demonstrated in the performance of BCH(63,36) and BCH(63,45) codes with cycle-reduced parity-check matrices. The proposed IS-based-active Weight Belief Propagation (WBP) decoder shows improvements of up to 0.4dB in the waterfall region and up to 1.9dB in the error-floor region of the BER curve, over the conventional WBP. This approach can be easily adapted to generate efficient samples to train any other deep learning-based decoder.
翻译:暂无翻译