We present APAC-Net, an alternating population and agent control neural network for solving stochastic mean field games (MFGs). Our algorithm is geared toward high-dimensional instances of MFGs that are beyond reach with existing solution methods. We achieve this in two steps. First, we take advantage of the underlying variational primal-dual structure that MFGs exhibit and phrase it as a convex-concave saddle point problem. Second, we parameterize the value and density functions by two neural networks, respectively. By phrasing the problem in this manner, solving the MFG can be interpreted as a special case of training a generative adversarial network (GAN). We show the potential of our method on up to 100-dimensional MFG problems.
翻译:我们提出APAC-Net,这是一个交替的人口和代理控制神经网络,用于解决随机中度野外游戏(MFGs),我们的算法是针对现有解决方案方法无法达到的MFG的高维实例。我们分两个步骤实现这一点。首先,我们利用MFGs展示的基本的可变原始-双重结构,并把它说成一个共振-凝结支撑点问题。第二,我们分别将两个神经网络的价值和密度函数参数化。用这种方式来表述问题,解决MFG可以被解释为培训基因对抗网络(GAN)的特殊案例。我们展示了我们方法在多达100维的MFG问题上的潜力。