In this paper, we prove that it is W[2]-hard to approximate k-SetCover within any constant ratio. Our proof is built upon the recently developed threshold graph composition technique. We propose a strong notion of threshold graphs and use a new composition method to prove this result. Our technique could also be applied to rule out polynomial time $o\left(\frac{\log n}{\log \log n}\right)$ ratio approximation algorithms for the non-parameterized k-SetCover problem with $k$ as small as $O\left(\frac{\log n}{\log \log n}\right)^3$, assuming W[1]$\neq$FPT. We highlight that our proof does not depend on the well-known PCP theorem, and only involves simple combinatorial objects.
翻译:在本文中, 我们证明在任何恒定比例范围内, k- SetCover 的近似 K- SetCover 是 W[ 2]- hard 。 我们的证据是以最近开发的阈值图形构成技术为基础。 我们提出一个强烈的阈值图形概念, 并使用新的构成方法来证明这一结果。 我们的技术也可以用于排除非参数化 k- SetCover 问题的非参数化的 k- SetCover 比率近似算法, 其价值小于 $O\left (\ frac\log nunlog\log n ⁇ right) $3, 假设是 W[ 1\ n$\ neq$ FPT 。 我们强调, 我们的证据并不依赖于著名的五氯苯酚理论, 并且只涉及简单的组合对象 。